Datasheet

SMD10 Aiguilhe – Dual-Edge Pulse Sharpener

D-Series Modules – Subnanosecond Pulse Generator

FEATURES

- User controlled pulse edge sharpener
- Sub-nanosecond rise- and fall-time
- 300-ps pulse width
- High repetition rate (10 MHz)
- \bullet +5 V to + 30 V amplitude
- EMI noise immunity
- Ideal for rapid and reliable prototyping

APPLICATIONS

• Stroboscopic magnetic imaging TEM

Overview

The modules of the SMD-Series provide the experimentalists a complete line of instruments for the generation of short pulses at high repetition rates. First designed for stroboscopic magnetic imaging TEM (Transmission Electron Microscope), the SMD-Series offers a complete solution to deliver sub-nanosecond pulses into $50-\Omega$ loads at repetition rates ranging from DC to $10\,\mathrm{MHz}$.

The SMD10 Aiguilhe module mainly consists in a fixed-width pulse generator and a dual-edge pulse sharpener. The pulse generator, triggered via the input signal, delivers a high-voltage pulse to the edges-sharpener. This stage, consisting of two charge-controlled switches, allows the user to reduce both leading and trailing edges of the high-voltage pulse. The switching characteristics of the charge-controlled devices are adjusted through their bias currents using serial commands. The edges-sharpener output accessible on the front panel is also coupled to secondary outputs for synchronization and monitoring purposes.

Gathering other SMD-Series modules, the SR500 *Pulse Generator* is the ideal solution to generate high-voltage sub-nanosecond pulses at high repetition rate (10 MHz) for stroboscopic magnetic imaging TEM. With the additional SMZ320 *Serial Interface* module, the SR500 gives the user a complete control of the pulse generator over USB or optical interfaces.

Important Notice

The specifications provided apply to the SMD10-R20A module. Information in this document is subject to change without notice. Copyright © SISYPH, 2020. All rights reserved.

Pulse Generator Specifications

Trigger Input

Terminal Front-panel SMA connector

Input resistance ^a $10\,\mathrm{k}\Omega$

Trigger level TTL/5-V CMOS compatible

 $\begin{array}{ll} {\rm Range} & {\rm 0\,V\,\,to}\;+5\,{\rm V} \\ {\rm Repetition\,\,rate} & {\rm DC\,\,to}\;10\,{\rm MHz} \\ {\rm Pulse\,\,width} & {\rm 10\,ns\,\,min.} \end{array}$

Pulse Output

Terminal Front-panel SMA connector

Series-resistance 5Ω Load resistance 50Ω

Range +5 V to +30 V peak

 $\begin{array}{lll} \mbox{Propagation}^{\rm b} & 20 \ \mbox{ns max.} \\ \mbox{Rise time} & 500 \ \mbox{ps min.} \\ \mbox{Fall time} & 250 \ \mbox{ps min.} \\ \mbox{Width} & 300 \ \mbox{ps to } 1000 \ \mbox{ps} \end{array}$

Pulse Monitor

Terminal Front-panel SMA connector

Load resistance 50Ω

Coupling^c $-20 \,\mathrm{dB} \, (100 \,\mathrm{mV/V})$

Pulse Synchro

Terminal Front-panel SMA connector

Load resistance 50Ω

Coupling^c $-20 \,\mathrm{dB} \,(100 \,\mathrm{mV/V})$

 $^{^{\}rm a}50$ - Ω AC-termination option is available.

 $^{{}^{\}rm b}{\rm Measured}$ from Trigger Input to Pulse Output.

^cMeasured from Pulse Output.

Figure 1: Output Pulse. Conditions: $f_{\rm REP}=10\,{\rm MHz},\ V_{\rm REG}=30\,{\rm V},\ I_{\rm LE}=25\,{\rm mA}$ and $I_{\rm TE}=7\,{\rm mA}$. Refer to *Typical Performance Curves* (online) for more information.

Digital Interface Specifications

Bias Current Control

Terminal 50-pin stack-through connector

Interface 3-wire SPI Range 0 mA to +30 mA

Resolution 8-bit digital potentiometer

Trip Point Control

Terminal 50-pin stack-through connector

Resolution 8-bit digital potentiometer

Digital Inputs^b

Terminal 50-pin stack-through connector

Input resistance $100 \,\mathrm{k}\Omega$ (pull-up)

Trigger level TTL/5-V CMOS compatible

Digital Outputs^a

Terminal 50-pin stack-through connector

 $\begin{array}{lll} \text{Series resistance} & & 1\,k\Omega \\ \text{Load resistance} & & 10\,k\Omega \text{ min.} \\ \text{Range} & & 0\,V \text{ to } +5\,V \\ \end{array}$

 $^{^{\}rm a}{\rm Specifications}$ apply to /TRIG, /OVLD.

^bSpecifications apply to /RESET, /ENABLE, MOSI, SCK, /SET_CS, /TRIP_CS, /LED_GB, /LED_YM, /LED_RT.

Analog Interface Specifications

Bias Current Monitoring^a

Terminal 50-pin stack-through connector

 $\begin{array}{ll} {\rm Range} & 0\,{\rm V}\ {\rm to}\ +5\,{\rm V} \\ {\rm Sensitivity} & 100\,{\rm mV/mA} \\ {\rm Accuracy} & \pm5\,\% \end{array}$

Offset $\pm 100 \,\mu\text{A} \, \text{max}.$

Temperature Monitoring

Terminal 50-pin stack-through connector

Sensor 2-lead NTC thermistor $R_{25\,^{\circ}\mathrm{C}}$ 10 k Ω (accuracy $\pm 3\,\%$)

 β 3982 K from 25 °C to 85 °C (accuracy $\pm 3\%$)

Thermal resistance TBD

Power Supply Input^b

Terminal 50-pin stack-through connector

Range +5 V to +30 V

Level abs. \max .^d +30 V

Supply current $200 \,\mathrm{mA \ max^c}$.

General Specifications

This module is designed to be operated in laboratory environment.

Operating

Temperature $+15^{\circ}\text{C to } +30^{\circ}\text{C}$

Power Requirements

 $\begin{array}{ll} +15\,\mathrm{V} & I \leq 100\,\mathrm{mA} \\ -15\,\mathrm{V} & I \leq 100\,\mathrm{mA} \\ +5\,\mathrm{V} & I \leq 100\,\mathrm{mA} \\ +24\,\mathrm{V} & \mathrm{Not\ used} \end{array}$

Physical Properties

 $\begin{array}{ll} \mbox{Height (component side)} & 17 \, \mbox{mm max.} \\ \mbox{Weight} & \leq 100 \, \mbox{g} \end{array}$

PCB 4-layer FR4, $100 \,\mathrm{mm} \times 100 \,\mathrm{mm}$

Warranty

One (1) year parts and labor on defects

^aApplies to ITE, ILE.

^bThis DC input voltage (POWER) corresponds to the power supply of the pulse generator stage. The SMD20 module is designed to provide such a variable DC voltage ranging from +5 V to +30 V.

^cMeasured for $v_{\text{max}} = 30 \,\text{V}$ at $f_{\text{rep}} = 10 \,\text{MHz}$.

 $^{^{\}rm d}{\rm Stresses}$ above these specifications may cause permanent damage.

Ordering Information

Front Panel Options

SMD10-FP-xx Shielded 3U-4HP front-panel

SMD10-NP-xx none (standard)

Stack-through Header Options

SMD10-xx-SC 50-pin header^a (standard)

SMD10-xx-NC none

Example of Ordering Code

SMD10-NP-SC standard

Document Identifier

 $\rm SMD10\text{-}SS01\text{-}R20A$

^aTyco Part Number: 1-173145-4.